Synthesis, structure and reactivities of novel σ-ruthenocenylplatinum complexes ${ }^{\text {T}}$

 Kenkichi Sonogashira ${ }^{\text {b,2 }}$
${ }^{a}$ Department of Applied Chemistry, Faculty of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-0022, Japan
${ }^{\mathrm{b}}$ Department of Applied Science and Chemistry, Faculty of Engineering, Fukui University of Technology, 3-6-1 Gakuen, Fukui 910-8505, Japan

Received 8 June 1998

Abstract

Novel σ-ruthenocenylplatinum complexes (3) and (4) have been synthesized by the reaction of trimethylstannylruthenocene (1) or $1,1^{\prime}$-bis(trimethylstannyl)ruthenocene (2) with $\mathrm{Pt}(\operatorname{cod}) \mathrm{Cl}_{2}$, and characterized by means of spectral analyses as well we an X-ray diffraction study. In the cyclic voltammogram of complexes $\mathbf{3}$ and 4, irreversible two successive one-electron oxidation peaks of the ruthenocenyl group appear at lower potential than that of irreversible single-step two electron oxidation of ruthenocene. The treatments of σ-ruthenocenylplatinum complex (5) with carbon monoxide and aryl isocyanides cause the insertion into $\mathrm{Pt}-\mathrm{C}$ bond to give insertion products (7) and (9), respectively. The reaction of 5 with dimethyl or diethyl acetylenedicarboxylate results in the formal insertion of acetylene into the $\mathrm{C}-\mathrm{H}$ bond of the cyclopentadienyl group at 2-position to give $\mathbf{1 1}$ as observed in the reaction of σ-ferrocenyl analog (6). Competitive reactions of complexes 5 and $\mathbf{6}$ with CO , isocyanide or acetylene suggest that the reactivity of $\mathbf{5}$ towards these substrates is not as high as that of 6. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Platinum complex; Ruthenocene; Insertion; Carbon monoxide; Isocyanide; Acetylene

1. Introduction

Ferrocene, which is one of the representative organometallic compounds, has been of particular interest ever since its discovery in 1951 because of its unique structure and properties applicable to wide scientific fields [1]. Ruthenocene is a ferrocene analog of ruthenium, and has a typical sandwich structure with larger separation between two cyclopentadienyl rings relative than that of ferrocene [2,3]. In contrast to a reversible one electron redox behavior of ferrocene, ruthenocene

[^0]shows an irreversible one-step two electron oxidation at a higher potential than that of ferrocene [4].
Recently metallocenyl transition-metal complexes have been received much attention since some of which show an intramolecular interaction between transitionmetal atom and a central metal atom of metallocenyl ligand [5]. In the course of our study on σ-ferrocenylplatinum complexes, we have found that a ferrocenyl group acts as an electron pool controlling the reactivity of a platinum center [6]. Thus, σ-ferrocenylplatinum complexes show characteristic reactivities with CO, isocyanide and acetylene [7,8]. The remarkable feature of ruthenocene has led us to the chemistry of σ-ruthenocenylplatinum complexes, which may show the different or specific reactivity with relative to that of σ-ferrocenyl analog owing to the electronic and/or structural feature of the ruthenocenyl ligand. In comparison with many publications on σ-fer-
rocenyl transition-metal complexes, a limited number of studies on σ-ruthenocenyl transition-metal complexes have appeared in the literature [9]. Thus, we present here the synthesis of novel σ-ruthenocenylplatinum complexes and their reactivity of $\mathrm{Pt}-\mathrm{C}$ bond toward insertion of CO, isocyanide and acetylene.

2. Results and discussion

2.1. Syntheses of σ-ruthenocenylplatinum complexes

As a synthetic strategy of σ-ruthenocenylplatinum complexes, transmetallation of trimethylstannylruthenocene with $\mathrm{Pt}(\operatorname{cod}) \mathrm{Cl}_{2}$, that is a similar method used for the synthesis of σ-ferrocenylplatinum complex [10], was chosen. Treatment of ruthenocene with excess n BuLi (ca. 2.4 equivalents) in THF at $-50^{\circ} \mathrm{C}$ followed by treatment with trimethylstannylchloride at $0^{\circ} \mathrm{C}$ gave a mixture of ruthenocene, trimethylstannylruthenocene (1) and $1,1^{\prime}$-bis(trimethylstannyl)ruthenocene (2) in a 1:6:3 molar ratio (determined by GLC analysis). Since we could not isolate complexes $\mathbf{1}$ and $\mathbf{2}$, this mixture was treated with $\mathrm{Pt}(\operatorname{cod}) \mathrm{Cl}_{2}$ in refluxing THF and the resulting products were separated by column chromatography on alumina. $\mathrm{RcPt}(\operatorname{cod}) \mathrm{Cl} \quad(\mathrm{Rc}=$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)(\mathbf{3})$ and $\left\{\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pt}(\operatorname{cod}) \mathrm{Cl}_{2} \mathrm{Ru}(4)\right.$ were obtained from benzene fraction in 64% yield and from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction in 37% yield, respectively. These complexes $\mathbf{3}$ and $\mathbf{4}$ are air and moisture stable at ambient temperature both in the solid state and in solution. Characterization of these complexes was made by the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra as well as an X-ray analysis (Scheme 1).

The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{3}$ showed two triplet signals at $\delta 5.60$ and 5.11 attendant with ${ }^{195} \mathrm{Pt}$ satellite peaks (${ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=29.3$ and 74.7 Hz , respectively) attributed to olefinic protons of a cod ligand, along with two triplets of substituted cyclopentadienyl protons at δ 4.69 and 4.60 , and a singlet of non-substituted cyclopentadienyl protons at $\delta 4.59$. The resonances of cyclopentadienyl protons of $\mathbf{3}$ appeared much lower field than those of σ-ferrocenyl analogs, $\mathrm{FcPt}(\mathrm{cod}) \mathrm{Cl}$ $\left(\mathrm{Fc}=\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right)$ [11], suggesting the lower elec-

Scheme 1.

Fig. 1. Cyclic voltammogram of $3\left(1.9 \times 10^{-3} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; scan rate $100 \mathrm{mV} \mathrm{s}{ }^{-1}$, supporting electrolyte $\mathrm{Bu}_{4} \mathrm{NPF}_{6}\left(1.0 \times 10^{-1} \mathrm{M}\right)$, working electrode Pt-disk (2 mm diameter).
tron density of the cyclopentadienyl rings in the ruthenocenyl compounds relative to ferrocenyl analogs [12]. Similar shifts of the signals attributed to substituted cyclopentadienyl protons into lower magnetic field was also observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 4 .
Subsequently, the electrochemical properties of $\mathbf{3}$ and 4 were studied by cyclic voltammetry. In contrast to a reversible one-electron redox behavior of the ferrocenyl group in $\mathrm{FcPt}(\operatorname{cod}) \mathrm{Cl}$ [11], the cyclic voltammogram of 3 (Fig. 1) exhibited irreversible two successive one-electron oxidation peaks of the ruthenocenyl moiety $E_{\mathrm{a}}=$ $0.53 \mathrm{~V}\left(\mathrm{Ru}^{\mathrm{II}} / \mathrm{Ru}^{\text {III }}\right) ; 0.80 \mathrm{~V}\left(\mathrm{Ru}^{\text {III }} / \mathrm{Ru}^{\mathrm{IV}}\right)$ relative to $\mathrm{Ag} / \mathrm{AgCl}$ at the Pt -disc electrode in dichloromethane solution. If one considers that ruthenocene undergoes an irreversible single-step two electron oxidation at $E_{\mathrm{a}}=0.88 \mathrm{~V}$, it appears that the platinum fragment strongly donates electron density to the ruthenocenyl group and stabilizes the ruthenocenium cation fragment [11,13]. Complex 4 also showed similar oxidation behavior at lower potential $E_{\mathrm{a}}=0.35 \mathrm{~V}\left(\mathrm{Ru}^{\mathrm{II}} / \mathrm{Ru}^{\text {III }}\right) ; 0.58$ $\mathrm{V}\left(\mathrm{Ru}^{\mathrm{II}} / \mathrm{Ru}^{\mathrm{IV}}\right)$ relative to $\mathrm{Ag} / \mathrm{AgCl}$ in the cyclic voltammogram as shown in Fig. 2. The shift of oxidation potential of $\mathbf{4}$ relative to $\mathbf{3}$ is also explained by the strong electron donation of the platinum moieties.
The molecular structure of $\mathbf{3}$ is shown in Fig. 3 and selected bond lengths and angles are given in Table 1. The environment of the Pt atom is the expected squareplanar with σ-bond to the ruthenocenyl group and

Fig. 2. Cyclic voltammogram of $4\left(1.0 \times 10^{-3} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; scan rate $100 \mathrm{mV} \mathrm{s}{ }^{-1}$, supporting electrolyte $\mathrm{Bu}_{4} \mathrm{NPF}_{6}\left(1.0 \times 10^{-1} \mathrm{M}\right)$, working electrode Pt-disk (2 mm diameter).

Fig. 3. Molecular structure of 3. Hydrogen atoms have been omitted for clarity.
π-bonds to the cyclooctadiene ligand. $\operatorname{The} \operatorname{Pt}(1)-\mathrm{C}(1)$ bond length trans to cyclooctadiene is 2.033(5) A, which is comparable to those observed in $\mathrm{Pt}(-$ cod) $\left\{\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Cl}\right)\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{Cl}\right)\right\}_{2} \quad$ (2.003(19) and 2.042(16) £) $[14]$ and $\left\{\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pt}(\operatorname{cod}) \mathrm{Cl}\right\} \mathrm{Mn}(\mathrm{CO})_{3}(2.04(1) \AA)$ [15]. The $\mathrm{Pt}(1)-\mathrm{C}(11)$ and $\mathrm{Pt}(1)-\mathrm{C}(12)$ bond lengths (2.284(6) and $2.315(5) \AA$) are longer than those of $\mathrm{Pt}(1)-\mathrm{C}(15)$ and $\mathrm{Pt}(1)-\mathrm{C}(16)(2.126(6)$ and $2.155(5) \AA)$, and the bond distance of $\mathrm{C}(11)-\mathrm{C}(12)(1.367(8) \AA)$ is shorter than that of $\mathrm{C}(15)-\mathrm{C}(16)(1.392(8) \AA)$. These phenomena are due to the difference of trans influence between the ruthenocenyl group and the Cl ligand. The dihedral angle between the plane containing $\operatorname{Pt}(1), \mathrm{C}(1)$ and $\mathrm{Cl}(1)$, and the cyclopentadienyl ring consisting of $\mathrm{C}(1)-\mathrm{C}(5)$ is 14.6°. The two cyclopentadienyl rings are

Table 1
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 3

Bond lengths (\AA)			
$\mathrm{Pt}(1)-\mathrm{C}(1)$	$2.033(5)$	$\mathrm{Pt}(1)-\mathrm{C}(16)$	$2.155(5)$
$\mathrm{Pt}(1)-\mathrm{C}(11)$	$2.284(6)$	$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.319(2)$
$\mathrm{Pt}(1)-\mathrm{C}(12)$	$2.315(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.367(8)$
$\mathrm{Pt}(1)-\mathrm{C}(15)$	$2.126(6)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.392(8)$
Bond angles $\left(^{\circ}\right)$			
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$91.2(2)$	$\mathrm{C}(11)-\mathrm{Pt}(1)-\mathrm{C}(16)$	$95.7(2)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(11)$	$86.9(2)$	$\mathrm{C}(11)-\mathrm{Pt}(1)-\mathrm{C}(12)$	$34.6(2)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(12)$	$92.4(2)$	$\mathrm{C}(12)-\mathrm{Pt}(1)-\mathrm{C}(15)$	$80.4(2)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(15)$	$91.3(2)$	$\mathrm{C}(15)-\mathrm{Pt}(1)-\mathrm{C}(16)$	$37.9(2)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(16)$	$95.0(2)$		

essentially parallel and the ruthenocenyl group has an eclipsed conformation.
The molecular structure of $\mathbf{4}$ is also illustrated in Fig. 4 and selected bond lengths and angles are listed in Table 2. As expected from ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra, two platinum atoms are σ-bonded to both cyclopentadienyl rings and the coordination around the each platinum atom is similar to that of 3. It may be of interest that two bulky platinum moieties are closely located each other by the rotation of cyclopentadienyl groups. However, the distance between $\operatorname{Pt}(1)$ and $\operatorname{Pt}(2)$ is $4.5983(9) \AA$, suggesting no direct interaction between two platinum atoms. The distances of $\mathrm{Pt}(1)-\mathrm{Cl}(2)$ and $\mathrm{Pt}(2)-\mathrm{Cl}(1)$ are $>4 \AA$, which are clearly in the range of nonbonding distances. Therefore, the conformation of cyclopentadienyl groups bound to a platinum moiety is likely due to crystal-packing force.

Complex 3 was easily converted to a phosphine analog 5 by a ligand-exchange reaction. Thus, treatment of $\mathbf{3}$ with triethylphosphine gave complex 5a in 85% yield. Treatment of $\mathbf{5 a}$ with excess NaBr or NaSCN in methanol caused an exchange of an anion ligand to give $\mathbf{5 b}$ and $\mathbf{5 c}$, respectively. Since slow evaporation of hexane solution of 5 c gave fine crystals, an X-ray analysis was performed. There are two independent molecules with essentially the same structure in a unit cell. One of the two molecular structures of $\mathbf{5 c}$ is shown in Fig. 5 and selected bond lengths and angles are listed in Table 3. $\mathrm{Pt}-\mathrm{C}$ bond lengths are 2.032(8)

Fig. 4. Molecular structure of 4. Hydrogen atoms have been omitted for clarity.
and $2.030(8) \AA$, respectively. These values are comparable those of σ-ruthenocenylplatinum complexes (vide supra). Since a bulky platinum group is directly linked to the cyclopentadienyl group, the ruthenocenyl moiety has a strained structure with the tilt angle between two cyclopentadienyl planes of 10.1 and 9.3°, respectively [8]. The platinum atoms lie at a distance of 0.61 or 0.63 \AA from the plane of the bound cyclopentadienyl group, which is also due to the steric effect of the bulky platinum moiety. The coordination planes around Pt

Table 2
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for 4

Bond lengths (\AA)			
$\mathrm{Pt}(1)-\mathrm{C}(1)$	$2.031(9)$	$\mathrm{Pt}(2)-\mathrm{C}(6)$	$2.030(9)$
$\mathrm{Pt}(1)-\mathrm{C}(11)$	$2.13(1)$	$\mathrm{Pt}(2)-\mathrm{C}(19)$	$2.12(1)$
$\mathrm{Pt}(1)-\mathrm{C}(12)$	$2.16(1)$	$\mathrm{Pt}(2)-\mathrm{C}(20)$	$2.14(1)$
$\mathrm{Pt}(1)-\mathrm{C}(15)$	$2.27(1)$	$\mathrm{Pt}(2)-\mathrm{C}(23)$	$2.26(1)$
$\mathrm{Pt}(1)-\mathrm{C}(16)$	$2.28(1)$	$\mathrm{Pt}(2)-\mathrm{C}(24)$	$2.27(1)$
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.342(3)$	$\mathrm{Pt}(2)-\mathrm{Cl}(2)$	$2.317(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.38(1)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.39(2)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.36(2)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.37(2)$
Bond angles $\left(^{\circ}\right)$			
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$91.1(3)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{C}(6)$	$91.9(3)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(15)$	$87.7(4)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{C}(23)$	$90.4(4)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(16)$	$92.4(2)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{C}(24)$	$88.2(4)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(11)$	$92.6(4)$	$\mathrm{C}(6)-\mathrm{Pt}(2)-\mathrm{C}(19)$	$93.1(4)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(12)$	$93.4(4)$	$\mathrm{C}(6)-\mathrm{Pt}(2)-\mathrm{C}(20)$	$91.3(4)$
$\mathrm{C}(11)-\mathrm{Pt}(1)-\mathrm{C}(16)$	$81.2(4)$	$\mathrm{C}(19)-\mathrm{Pt}(2)-\mathrm{C}(24)$	$80.9(5)$
$\mathrm{C}(15)-\mathrm{Pt}(1)-\mathrm{C}(16)$	$34.8(4)$	$\mathrm{C}(19)-\mathrm{Pt}(2)-\mathrm{C}(20)$	$38.0(5)$
$\mathrm{C}(12)-\mathrm{Pt}(1)-\mathrm{C}(15)$	$81.7(5)$	$\mathrm{C}(20)-\mathrm{Pt}(2)-\mathrm{C}(23)$	$81.6(5)$
$\mathrm{C}(11)-\mathrm{Pt}(1)-\mathrm{C}(12)$	$37.7(4)$	$\mathrm{C}(23)-\mathrm{Pt}(2)-\mathrm{C}(24)$	$35.1(5)$

atoms make dihedral angles with the cyclopentadienyl planes of 80.3 and 81.7°, respectively.

2.2. Reaction of carbon monoxide, aryl isocyanide and acetylene with σ-ruthenocenylplatinum complexes

In analogy with σ-ferrocenylplatinum complexes (6), reactions of σ-ruthenocenylplatinum complexes 5 with CO, aryl isocyanide and acetylene having an electronwithdrawing group were investigated (Scheme 2). When complex 5a was treated with $30 \mathrm{~kg} \mathrm{~cm}^{-2}$ of CO at room temperature (r.t.) for 24 h pale yellow crystals of trans $-\mathrm{RcC}(\mathrm{O}) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}$ (7a) were obtained in 88% yield. The IR and ${ }^{13} \mathrm{C}$-NMR spectra indicated that 7 a was produced by insertion of CO into the $\mathrm{Pt}-\mathrm{C}$ bond of $\mathbf{5 a}$. The CO stretching vibration was observed at $1610 \mathrm{~cm}^{-1}$ in the IR spectrum of $7 \mathbf{a}$. The resonance attributed to carbonyl carbon appeared at $\delta 211.6$ in the ${ }^{13} \mathrm{C}$-NMR spectrum [7]. It is noteworthy that the insertion of CO into the $\mathrm{Pt}-\mathrm{C}$ bond occurs at r.t. as observed σ-ferrocenyl platinum analogs 6 though the carbonylation of trans $-\operatorname{RPt}\left(\mathrm{PR}_{3}^{\prime}\right)_{2} \mathrm{X}$ was achieved at $90^{\circ} \mathrm{C}$ [16]. The similar treatment of $\mathbf{5 b}$ gave the insertion product, trans $-\mathrm{RcC}(\mathrm{O}) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Br}$ ($7 \mathbf{b}$), in 88% yield, but the reaction of $\mathbf{5 c}$ with CO afforded the acylplatinum complex 7 c in only 11% yield.

On treatment of $\mathbf{5 a}$ with 1.2 equivalent of p-tolylisocyanide in refluxing 1,2-dichloroethane for 6 h , a yellow complex, trans $-\mathrm{RcC}\left(=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl} \quad$ (9a), which is resulted from insertion of isocyanide into the

Fig. 5. Molecular structure of 5c. Hydrogen atoms have been omitted for clarity.
$\mathrm{Pt}-\mathrm{C}$ bond of $\mathbf{5 a}$, was isolated in 63% yield. The insertion of isocyanide is revealed by the $v(\mathrm{C}=\mathrm{N}) \mathrm{ab}-$ sorption at $1550 \mathrm{~cm}^{-1}$ in the IR spectrum of 9 a and the resonance of iminoacyl carbon at $\delta 172.1$ in the ${ }^{13} \mathrm{C}$ NMR spectrum [7]. ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectrum of 9 a showed a singlet signal at $\delta 14.70$ with satellite signals due to the coupling of ${ }^{195} \mathrm{Pt}$ nucleus ($J_{\mathrm{Pt}-\mathrm{P}}=2894 \mathrm{~Hz}$), indicating the trans conformation around the Pt atom. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum and the results of elemental analysis were also consistent with the structure of $\mathbf{9 a}$. The reaction of 5a with 2,6 -xylyl or p-nitrophenyl isocyanide in a similar

Table 3
Selected bond lengths $\left(\AA\right.$) and angles $\left({ }^{\circ}\right)$ for $5 \mathbf{5}$

Bond lengths (\AA)			
$\operatorname{Pt}(1)-\mathrm{P}(1)$	$2.293(3)$	$\mathrm{Pt}(2)-\mathrm{P}(3)$	$2.296(2)$
$\operatorname{Pt}(1)-\mathrm{P}(2)$	$2.329(3)$	$\operatorname{Pt}(2)-\mathrm{P}(4)$	$2.317(3)$
$\operatorname{Pt}(1)-\mathrm{N}(1)$	$2.039(7)$	$\mathrm{Pt}(2)-\mathrm{N}(2)$	$2.070(8)$
$\operatorname{Pt}(1)-\mathrm{C}(1)$	$2.032(8)$	$\mathrm{Pt}(2)-\mathrm{C}(31)$	$2.030(8)$
Bond angles $\left(^{\circ}\right)$			
$\mathrm{P}(1)-\operatorname{Pt}(1)-\mathrm{P}(2)$	$176.17(9)$	$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{P}(4)$	$175.36(9)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{N}(1)$	$89.3(2)$	$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{N}(2)$	$89.2(2)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$94.9(2)$	$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{C}(31)$	$94.6(2)$
$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{N}(1)$	$87.9(2)$	$\mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{N}(1)$	$87.9(2)$
$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$87.8(2)$	$\mathrm{P}(4)-\mathrm{Pt}(2)-\mathrm{C}(31)$	$88.2(2)$
$\mathrm{N}(1)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$175.7(3)$	$\mathrm{N}(2)-\mathrm{Pt}(2)-\mathrm{C}(31)$	$175.8(3)$

manner also afforded the insertion product, trans$\mathrm{RcC}\left(=\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}$ (9b) or trans $\mathrm{RcC}\left(=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p\right) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}(9 \mathrm{c})$, in 36 and 50% yields, respectively.

The molecular structure of $9 \mathbf{9}$ is shown in Fig. 6. p-Tolyl isocyanide is undoubtedly inserted into the $\mathrm{Pt}-\mathrm{C}$ bond of 5a to form iminoacylplatinum complex and the coordination sphere around the Pt atom is a

$$
\begin{aligned}
& \mathbf{a}: X=\mathrm{Cl} \\
& \mathbf{b}: X=\mathrm{Br} \\
& \mathbf{c}: \mathrm{X}=\mathrm{NCS}
\end{aligned}
$$

$$
5
$$

$$
\text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {, r.t. }
$$

7
a: $\mathrm{X}=\mathrm{Cl}$
b: $\mathrm{X}=\mathrm{Br}$
c: $\mathrm{X}=\mathrm{NCS}$

a: $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p$
b: $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6$
c: $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$

a: $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Mc}$ b: $\mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$ c: $\mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$

Fig. 6. Molecular structure of $\mathbf{9 a} \cdot \mathrm{CHCl}_{3}$. Hydrogen atoms and a solvent molecule have been omitted for clarity.
square-planar with two PEt_{3} ligands in mutually trans positions. Table 4 lists selected bond lengths and angles. The $\operatorname{Pt}(1)-\mathrm{C}(11)$ bond length of $2.03(2) \AA$ is comparable with those of other trans-iminoacylplatinum complexes [17]. The $\mathrm{Pt}(1)-\mathrm{Cl}(1)$ bond distance is $2.438(5)$ \AA, which is longer than those of $\mathbf{3}$ and $\mathbf{4}$ (vide supra) and comparable to that of trans $-\mathrm{FcC}(\mathrm{O}) \mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}(\mathbf{8})$ (2.441(2) A) [7], indicating the strong trans influence of the iminoacyl group as well as an acyl group. The plane of the iminoacyl group defined by $\mathrm{Pt}(1), \mathrm{C}(11), \mathrm{C}(1)$, $\mathrm{N}(1)$ and $\mathrm{C}(12)$ makes dihedral angles with the Pt coordination plane and the cyclopentadienyl ring $\mathrm{C}(1)-$ $\mathrm{C}(5)$ for 72.8 and 31.1°, respectively. The former is smaller than that of a ferrocenyl analog (10) having a cis geometry, while the latter is larger than that of $\mathbf{1 0}$

Table 4

Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{9 a} \cdot \mathrm{CHCl}_{3}$

Bond lengths (\AA)			
$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.438(5)$	$\mathrm{C}(1)-\mathrm{C}(11)$	$1.50(3)$
$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.320(6)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.230(2)$
$\mathrm{Pt}(1)-\mathrm{P}(2)$	$2.299(6)$	$\mathrm{N}(1)-\mathrm{C}(12)$	$1.43(2)$
$\mathrm{Pt}(1)-\mathrm{C}(11)$	$2.03(2)$		
Bond angles $\left(^{\circ}\right)$			
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(1)$	$90.1(2)$	$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{C}(11)$	$92.4(6)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$87.3(2)$	$\mathrm{Pt}(1)-\mathrm{C}(11)-\mathrm{C}(1)$	$115(1)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(11)$	$177.7(6)$	$\mathrm{Pt}(1)-\mathrm{C}(11)-\mathrm{N}(1)$	$127(2)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{P}(2)$	$177.3(2)$	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(1)$	$117(1)$
$\mathrm{P}(1)-\mathrm{Pt}(1)-\mathrm{C}(11)$	$90.2(6)$	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(12)$	$124(2)$

[7]. The tilt angle between two cyclopentadienyl rings of the moiety ruthenocene is 0.8°.
Complex 5a was treated with slight excess of dimethylacetylenedicarboxylate (DMAD) in benzene at reflux temperature for 24 h and the yellow crystals of 11a was obtained in 25% yield. The IR spectrum of 11a showed a $v(\mathrm{C}=\mathrm{C})$ absorption at $1610 \mathrm{~cm}^{-1}$ and two $v(\mathrm{C}=\mathrm{O})$ absorptions at 1735 and $1705 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}-$ NMR spectrum exhibited a signal of the olefinic proton at $\delta 7.94$ and three resonances of the substituted cyclopentadienyl ring protons at $\delta 4.67,4.63$ and 4.52. All of the spectroscopic data (IR, ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}-$ and ${ }^{31} \mathrm{P}-\mathrm{NMR}$) for 11a are similar to those of a ferrocenyl analog (12a) ($\mathrm{X}=\mathrm{Cl} ; \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$) [8], indicating that 11a has a similar structure to that of 12a, i.e. 11a was produced by the formal insertion of DMAD into the $\mathrm{C}-\mathrm{H}$ bond at 2-position of the ruthenocenyl group. Similar treatments of $\mathbf{5 b}$ with DMAD and $\mathbf{5 a}$ with diethyl acetylenedicarboxylate afforded 11b in 40% yield and 11c in 30% yield, respectively. The reaction mechanism of the formation of $\mathbf{1 1}$ will be identical with that of $\mathbf{1 2}$ as previously reported.

6

8

Table 5
Crystallographic data for $\mathbf{3 , 4 , 5} \mathbf{5}$ and $\mathbf{9 a} \cdot \mathrm{CHCl}_{3}$

	3	4	5c	9a. CHCl_{3}
Formula	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClPtRu}$	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{Pt}_{2} \mathrm{Ru}$	$\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NP}_{2} \mathrm{PtRuS}$	$\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{Cl}_{4} \mathrm{NP}_{2} \mathrm{PtRu}$
$M_{\text {w }}$	568.98	906.69	719.74	933.64
Color, habit	Yellow, prismatic	Colorless, needle	Pale yellow, plate	Yellow, prismatic
Crystal size (mm)	$0.35 \times 0.25 \times 0.25$	$0.25 \times 0.07 \times 0.02$	$0.25 \times 0.25 \times 0.10$	$0.30 \times 0.20 \times 0.10$
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Lattice parameters	$a=10.719(2) \AA$	$a=12.515(2) \AA$	$a=17.236(3) \AA$	$a=16.548(4) \AA$
	$b=10.834(2) \AA$	$b=10.170(2) \AA$	$b=20.631(5) \AA$	$b=13.128(3) \AA$
	$c=14.342(2) \AA$	$c=18.961(2) \AA$	$c=7.734(2) \AA$	$c=17.010(4) \AA$
			$\alpha=99.63(2)^{\circ}$	
	$\beta=102.47(1)^{\circ}$	$\beta=93.70(1)^{\circ}$	$\beta=94.58(2)^{\circ}$	$\beta=96.62(2)^{\circ}$
			$\gamma=86.18(2)^{\circ}$	
	$V=1626.3(3) \AA^{3}$	$V=2408.2(6) \AA^{3}$	$V=2705(1) \AA^{3}$	$V=3670(1) \AA^{3}$
Space group	$P 2_{1} / n$ (no. 14)	$P 2_{1} / c$ (no. 14)	$P \overline{1}$ (no. 2)	$P 2_{1} / n$ (no. 14)
Z	4	4	4	4
$D_{\text {calc. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.324	2.501	1.767	1.689
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\mathrm{a} \alpha}\right)\left(\mathrm{cm}^{-1}\right)$	97.52	125.58	59.70	46.52
2θ range (${ }^{\circ}$)	$6<2 \theta<55.1$	$6<2 \theta<50.1$	$6<2 \theta<50.1$	$6<2 \theta<50.2$
No. of reflections measured	3956	4531	9920	7065
No. of observed reflections	2979 ($I>3.0 \sigma(I)$)	3136 ($I>3.0 \sigma(I)$)	$6718(I>3.0 \sigma(I))$	2807 ($I>2.0 \sigma(I)$)
No. of variables	190	280	523	361
Residuals: R; R_{w}	0.026; 0.029	0.032; 0.036	0.036; 0.035	0.064; 0.056
Goodness-of-fit	1.59	1.38	1.39	1.25
Max; min (Δ / ρ) (e \AA^{-3})	0.95; -2.32	1.09; -0.92	1.49; - 1.29	0.87; - 1.47

10

As shown above, reaction of σ-ruthenocenylplatinum complexes 5 with CO, aryl isocyanide and acetylene having an electron-withdrawing group under the same conditions for σ-ferrocenylplatinum analog 6 gave similar insertion products $\mathbf{7 , 9}$ and 11, respectively. Consequently, reactivity of σ-ruthenocenylplatinum complex 5 toward insertion reactions was compared with those of σ-ferrocenylplatinum analog 6. A competitive reaction of complexes 5a and $\mathbf{6 a}(\mathrm{X}=\mathrm{Cl})$ with atmospheric pressure of CO at r.t. (about $20^{\circ} \mathrm{C}$) in benzene giving acylplatinum complexes, 7a and $\mathbf{8 a}(\mathrm{X}=\mathrm{Cl})$, was monitored by ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectroscopy. The carbonylation of $\mathbf{6 a}$ is ca. 11 times faster than that of 5a. Similarly, the insertion of p-nitrophenyl isocyanide into the $\mathrm{Pt}-\mathrm{C}$ bond of $\mathbf{6 a}$ is about 300 times faster than that of $\mathbf{5 a}$ at r.t. in 1,2-dichloroethane. The rate of the reaction of $\mathbf{6 a}$ with DMAD was also is ca. 2.5 times faster than that of 5a. These results indicate that reactivity of σ-ruthenocenylplatinum complex 5a toward CO , isocyanide and acetylene insertions is lower than that of σ-ferrocenylplatinum analog 6. A study on the mechanism of CO insertion into a $\mathrm{Pt}-\mathrm{C}$ bond has shown that an electron-donating substituent of an organic group enhances the rate of CO insertion [18]. Although metallo-
cenyl groups are a strong electron-donating group, electron density of the cyclopentadienyl ring of ferrocene is higher than that of ruthenocene as suggested by the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of $\mathbf{5 a}$ and $\mathbf{6 a}$ (vide supra) [12]. Therefore, the lower electron-donating feature of a ruthenocenyl group than that of a ferrocenyl group may causes the difference in the reactivity between σ-ruthenocenyl- and σ-ferrocenylplatinum complexes. The result that the carbonylation of $\left\{\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pt}(\mathrm{cod})\right.$ $\mathrm{Cl}\} \mathrm{Mn}(\mathrm{CO})_{3}$ requires heating at $100^{\circ} \mathrm{C}$ is consistent with this explanation [15].

3. Experimental

All reactions except for the reaction with carbon monoxide were performed under a nitrogen atmosphere, and the workup was carried out in air. ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were measured on a JEOL $\alpha 400$ spectrometer. For ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR} \mathrm{SiMe}_{4}$ was used as an internal standard, and ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra were referred to an external standard of PPh_{3}. IR spectra were recorded on a JASCO A-202 spectrometer. Cyclic voltammetric measurement was performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at r.t. with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte and the scan rate was $100 \mathrm{mV} \mathrm{s}{ }^{-1}$. The reference electrode was $\mathrm{Ag} / \mathrm{AgCl}$ (acetonitrile) and working electrode was a platinumdisc electrode (2 mm diameter). All chemicals were used as received and aryl isocyanide were prepared according to the literature method [19].

3.1. Preparation of trimethylstannylruthenocene (1) and 1,1'-bis(trimethystannyl)ruthenocene (2)

A 1.6 M solution of $n-\mathrm{BuLi}$ in hexane $(10.0 \mathrm{ml}, 16.0$ mmol) was added dropwise to a solution of ruthenocene ($1.516 \mathrm{~g}, 6.555 \mathrm{mmol}$) in THF (50 ml) at $-50^{\circ} \mathrm{C}$. After stirring for 1 h at $-50^{\circ} \mathrm{C}$, the reaction mixture was allowed to warm slowly to r.t. and stirred for an additional 20 h . Then to a reaction mixture was added dropwise a solution of $\mathrm{Me}_{3} \mathrm{SnCl}(2.710 \mathrm{~g}, 13.60$ mmol) in THF (40 ml) at $0^{\circ} \mathrm{C}$. After the addition was complete, the mixture was allowed to warm at r.t. and further stirred for 22 h . The solvent was removed under vacuum and the resulting orange oil was dissolved in benzene (50 ml) and washed three times with water (200 ml). The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the benzene was evaporated under reduced pressure. The residue was dissolved in hexane (50 ml) again and filtered. Finally the filtrate was evaporated to dryness in vacuo and the 1.712 g of mixture of ruthenocene (10%), trimethylstannylruthenocene (1) (60%) and $1,1^{\prime}$-bis(trimethystannyl)ruthenocene (2) (30%) was obtained. This mixture was used for reaction without further purification.

1: Yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.69$ ($\mathrm{t}, J=1.5$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.50\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.41(\mathrm{t}, J=1.5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.18\left(\mathrm{~s},{ }^{2} J_{\mathrm{Sn}-\mathrm{H}}=53.2,56.1 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{Me}\right)$. ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right): \delta 111.0$ (s, ipso C of $\mathrm{C}_{5} \mathrm{H}_{4}$), 75.68 $\left(\mathrm{s}, J_{\mathrm{Pt}-\mathrm{C}}=51.3 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 72.26\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=36.4 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 69.94\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right),-8.41\left(\mathrm{~s},{ }^{1} J_{\mathrm{Sn}-\mathrm{C}}=361,346 \mathrm{~Hz}\right.$, Me).

2: Yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.62$ ($\mathrm{t}, J=1.5$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.39\left(\mathrm{t}, J=1.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 0.18(\mathrm{~s}$, $\left.{ }^{2} J_{\mathrm{Sn}-\mathrm{H}}=53.2,55.6 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{Me}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $\delta 75.49\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=51.3 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 72.24\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=36.4\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right),-8.41\left(\mathrm{~s},{ }^{1} J_{\mathrm{Sn}-\mathrm{C}}=361,344 \mathrm{~Hz}, \mathrm{Me}\right)$. The resonance attributed to the $\mathrm{C}_{5} \mathrm{H}_{4}$ ipso carbons was not detected.

3.2. Preparation of $\mathrm{RcPt}(\mathrm{cod}) \mathrm{Cl}$ (3) and $\left\{\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Pt}\right.$ (cod)Cl\} ${ }_{2} \mathrm{Ru}$ (4)

A 1.712 g of the mixture of ruthenocene (10%), trimethylstannylruthenocene (1) (60\%) and $1,1^{\prime}$ bis(trimethystannyl)ruthenocene (1) (30%) was treated with $\mathrm{Pt}(\operatorname{cod}) \mathrm{Cl}_{2}(1.614 \mathrm{~g}, 4.313 \mathrm{mmol})$ in THF $(100 \mathrm{ml})$ under reflux for 4 h . The solvent was distilled off under reduced pressure and the residue was chromatographed over alumina. Elution with benzene gave the following bands in the order of elution: the pale yellow band of ruthenocene ($145 \mathrm{mg}, 85 \%$ recovery) and the yellow band of 3. The solvent was removed from the second band in vacuo followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane to give yellow crystals of $\mathbf{3}(955 \mathrm{mg})$ in 64% yield. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ fraction was concentrated to dryness and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /benzene. Yel-
low precipitate of $\mathbf{4}(308 \mathrm{mg})$ was obtained in 37% yield by addition of hexane.
3: M.p. $163-167^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.60$ $\left(\mathrm{t}, J=2.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=29.3 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CH}\right), 5.11(\mathrm{t}$, $\left.J=2.6 \mathrm{~Hz},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=74.7 \mathrm{~Hz}, 2 \mathrm{H},=\mathrm{CH}\right), 4.69(\mathrm{t}, J=1.8$ $\left.\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{H}}=15.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.60(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.59\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.23-2.61\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 112.0\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{C}}=44.7 \mathrm{~Hz},=\mathrm{CH}\right)$, $86.68\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{C}}=205 \mathrm{~Hz},=\mathrm{CH}\right), 80.94$ (s , ipso C of $\mathrm{C}_{5} \mathrm{H}_{4}$), 73.58 ($\mathrm{s}, J_{\mathrm{Pt}-\mathrm{C}}=39.7 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}$), $71.23\left(\mathrm{~s}, J_{\mathrm{Pt}-}\right.$ $\left.\mathrm{C}=44.7 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.16\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 28.52\left(\mathrm{~s}, \mathrm{CH}_{2}\right) . \mathrm{CV}$ (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~V}$ vs. $\mathrm{Ag} / \mathrm{Ag}^{+}$): $E_{\mathrm{a}} 0.53,0.80$. Anal. Found; C, $38.12 ; \mathrm{H}, 3.46 ; \mathrm{Cl}, 6.50 \%$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClPtRu}$: C, 38.00 ; H, 3.72; Cl, 6.23%.
4: M.p. ${ }^{191-197^{\circ} \mathrm{C} \text { (dec.). }{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.58 ~}$ $\left(\mathrm{t}, J=2.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=24.4 \mathrm{~Hz}, 4 \mathrm{H},=\mathrm{CH}\right), 5.17(\mathrm{t}$, $\left.J=2.7 \mathrm{~Hz},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=76.1 \mathrm{~Hz}, 4 \mathrm{H},=\mathrm{CH}\right), 4.76(\mathrm{t}, J=1.6$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.62\left(\mathrm{t}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 2.25-$ $2.65\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 111.9(\mathrm{~s}$, $\left.{ }^{1} J_{\mathrm{Pt}-\mathrm{C}}=44.7 \mathrm{~Hz},=\mathrm{CH}\right), 86.69\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{C}}=208 \mathrm{~Hz}\right.$, $=\mathrm{CH}), 81.57\left(\mathrm{~s}\right.$, ipso C of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 73.76\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=38.1\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.44\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=39.7 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 28.51(\mathrm{~s}$, CH_{2}). CV (in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~V}$ vs. $\mathrm{Ag} / \mathrm{Ag}^{+}$): $E_{\mathrm{a}} 0.35,0.58$. Anal. Found; C, 34.25 ; H, 3.33; Cl, 7.77%. Calc. for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{Pt}_{2} \mathrm{Ru}: \mathrm{C}, 34.44 ; \mathrm{H}, 3.56 ; \mathrm{Cl}, 7.82 \%$.

3.3. Preparation of trans- $\mathrm{RcPt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}(5 a)$

To a solution of $\mathrm{RcPt}(\operatorname{cod}) \mathrm{Cl}$ (3) ($102 \mathrm{mg}, 0.179$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ was added a 1.0 M solution of PEt_{3} in THF ($0.36 \mathrm{ml}, 0.36 \mathrm{mmol}$) and the mixture was stirred for 2 h at r.t. After removal of the solvent in vacuo, the residue recrystallized from hexane gave pale yellow crystals (106 mg , yield 85%). M.p. $107-$ $108^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.46(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.34\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.27\left(\mathrm{t}, J=1.5 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{H}}=\right.$ $28.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 1.97-1.89 (m, $12 \mathrm{H}, \mathrm{CH}_{2}$), 1.10 (quintet, $\left.J=7.8 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $85.74\left(\mathrm{t},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=8.3 \mathrm{~Hz}\right.$, ipso C of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 78.07(\mathrm{~s}$, $\left.J_{\mathrm{Pt}-\mathrm{C}}=72.8 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.09\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 67.75\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}\right.$ $\left.=61.2 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 12.40\left(\mathrm{t}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.93(\mathrm{~s}$, $\left.\mathrm{CH}_{3}\right) \cdot{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 22.15\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2714 \mathrm{~Hz}\right)$. Anal. Found: C, $38.03 ; \mathrm{H}, 5.48 ; \mathrm{Cl}, 5.00 ; \mathrm{P}, 8.73 \%$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{ClP}_{2} \mathrm{PtRu}$: C, 37.91; $\mathrm{H}, 5.64 ; \mathrm{Cl}, 5.09$; P, 8.89\%.

3.4. Preparation of trans- $\mathrm{RcPt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Br}$ (5b)

To a solution of 5 a ($470 \mathrm{mg}, 0.674 \mathrm{mmol}$) in methanol (20 ml) was added a solution of $\mathrm{NaBr}(560$ $\mathrm{mg}, 5.44 \mathrm{mmol})$ in 30 ml of methanol and stirred for 3 h at r.t. After removal of the solvent in vacuo, the residue was dissolved in 50 ml of benzene and washed with 250 ml of water for three times. Organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and benzene was evaporated under vacuum again. Recrystallization from hexane gave pale
yellow crystals (437 mg , yield 87%). M.p. $135-136^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.48\left(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.35\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.28\left(\mathrm{t}, J=1.5 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{H}}=29.3 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 2.03-1.96\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.09$ (quintet, $\left.J=7.9 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 88.78(\mathrm{t}$, ${ }^{2} J_{\mathrm{P}-\mathrm{C}}=8.3 \mathrm{~Hz}$, ipso C of $\mathrm{C}_{5} \mathrm{H}_{4}$), $77.92\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=74.4\right.$ $\left.\mathrm{Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.22\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 67.72\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=62.9 \mathrm{~Hz}\right.$, $\mathrm{C}_{5} \mathrm{H}_{4}$), $13.14\left(\mathrm{t}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 8.01\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 19.81\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2693 \mathrm{~Hz}\right)$. Anal. Found: C, 35.84; H, 5.26; Br, 10.66; P, 8.45%. Calc. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{BrP}_{2} \mathrm{PtRu}: \mathrm{C}, 35.65$; H, 5.30; Br, 10.78; P, 8.35\%.

3.5. Preparation of trans-RcPt($\left.\mathrm{PEt}_{3}\right)_{2} \mathrm{NCS}(\mathbf{5 c})$

As described in the preparation of $\mathbf{5 b}$, treatment of 5a ($397 \mathrm{mg}, 0.569 \mathrm{mmol}$) with $\mathrm{NaSCN}(389 \mathrm{mg}, 4.79$ mmol) in 50 ml of acetone gave pale yellow crystals (387 mg , yield 95%). M.p. $117-118^{\circ} \mathrm{C}$. IR (KBr): $v(\mathrm{NCS}) 2100 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.47(\mathrm{t}, J=$ $\left.1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.33\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.17(\mathrm{t}, J=1.2$ $\left.\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{H}}=25.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 1.91-1.84(\mathrm{~m}, 12 \mathrm{H}$, CH_{2}), 1.12 (quintet, $J=7.9 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 134.0(\mathrm{~s}, \mathrm{NCS}), 80.58$ (s , ipso C of $\mathrm{C}_{5} \mathrm{H}_{4}$), $77.89\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=64.5 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.03\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 68.17$ ($\mathrm{s}, J_{\mathrm{Pt}-\mathrm{C}}=54.6 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{4}$), $13.02\left(\mathrm{t}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $7.88\left(\mathrm{~s}, \mathrm{CH}_{3}\right) \cdot{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 23.88\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=\right.$ 2654 Hz). Anal. Found: C, 38.24; H, 5.46; N, 1.94; P, 8.67%. Calc. for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{NP}_{2} \mathrm{PtRuS}: \mathrm{C}, 38.36$; H, 5.46; N, 1.95; P, 8.61\%.

3.6. Reaction of trans-RcPt($\left.\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}$ (5a) with CO

A dichloromethane solution of $5 \mathrm{a}(50 \mathrm{mg}, 0.072$ mmol) was placed in 100 ml of autoclave and charged with $\mathrm{CO}\left(30 \mathrm{~kg} \mathrm{~cm}^{-2}\right)$. After standing for 24 h at r.t., the solvent was removed under vacuum. Pale yellow crystals of 7 a (46 mg , yield 88%) were obtained by recrystallization of toluene/hexane. M.p. $153-154^{\circ} \mathrm{C}$. IR (KBr): $v(\mathrm{C}=\mathrm{O}) 1610 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.58\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.52(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), 1.93-1.75 (m, 12H, CH ${ }_{2}$), 1.15 (quintet, $J=7.9$ $\left.\mathrm{Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 211.6(\mathrm{~s}, \mathrm{CO})$, $101.1\left(\mathrm{t},{ }^{3} J_{\mathrm{P}-\mathrm{C}}=4.1 \mathrm{~Hz}\right.$, ipso C of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 71.45(\mathrm{~s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 71.16\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.42\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 14.18(\mathrm{t}, J=$ $\left.16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.81\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $16.61\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=3044 \mathrm{~Hz}\right)$. Anal. Found: C, 38.01; H, 5.34; $\mathrm{Cl}, 4.74 ; \mathrm{P}, 8.32 \%$. Calc. for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{ClOP}_{2} \mathrm{PtRu}: \mathrm{C}$, 38.10; H, 5.42; Cl, 4.89; P, 8.54\%.

3.7. Reaction of trans-RcPt $\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Br}$ (5b) with CO

This reaction was carried out by a procedure similar to that of 5a.

7b: Pale yellow crystals, yield 88%, m.p. $160-161^{\circ} \mathrm{C}$. IR (KBr): $v(\mathrm{C}=\mathrm{O}) 1590 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$
$5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.52(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), 1.99-1.80 (m, $12 \mathrm{H}, \mathrm{CH}_{2}$), 1.14 (quintet, $J=7.9$ $\left.\mathrm{Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 212.2\left(\mathrm{t},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=\right.$ $5.8 \mathrm{~Hz}, \mathrm{CO}), 100.7\left(\mathrm{t},{ }^{2} J_{\mathrm{Pt}-\mathrm{C}}=261 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{C}}=5.0 \mathrm{~Hz}\right.$, ipso C of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 71.50\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 71.26\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 70.45$ (s, $\mathrm{C}_{5} \mathrm{H}_{4}$), $14.72\left(\mathrm{t}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.89\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 16.46\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=3031 \mathrm{~Hz}\right)$. Anal. Found: C, 36.01 ; H, 5.15 ; Br, 10.44; P, 8.05%. Calc. for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{BrOP}_{2} \mathrm{PtRu}: \mathrm{C}, 35.90 ; \mathrm{H}, 5.11$; $\mathrm{Br}, 10.38$; P , 8.05\%.

3.8. Reaction of trans-RcPt(PEt $)_{2} \mathrm{Cl}$ (5a) with p-tolyl isocyanide

To a 20 ml of 1,2-dichloroethane of complex 5a (152 $\mathrm{mg}, 0.218 \mathrm{mmol}$) was added p-tolyl isocyanide (31 mg , $0.26 \mathrm{mmol})$. The reaction mixture was stirred for 6 h at reflux temperature. After removal of the solvent under vacuum, the residue was chromatographed on alumina using chloroform as an eluent. Yellow crystals of 9a (111 mg , yield 63%) was obtained by recrystallization from toluene/hexane. M.p. $182-183^{\circ} \mathrm{C}$. IR (KBr): $v(\mathrm{C}=\mathrm{N}) 1550 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.19$ $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.56\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.83-1.60\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.03$ (quintet, $J=7.8 \mathrm{~Hz}, \quad 18 \mathrm{H}, \quad \mathrm{PCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 172.1\left(\mathrm{t},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=7.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{N}\right), 151.2(\mathrm{~s}$, ${ }^{2} J_{\mathrm{Pt}-\mathrm{C}}=72.8 \mathrm{~Hz}$, ipso C of Ar bound to $-\mathrm{N}=\mathrm{C}$), 133.1 (s , ipso C of Ar bound to CH_{3}), 128.5 (s, Ar), 121.1 (s , Ar), 101.6 (s, ipso C of $\mathrm{C}_{5} \mathrm{H}_{4}$), $73.31\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.37$ (s , $\mathrm{C}_{5} \mathrm{H}_{5}$), $69.60\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 20.87\left(\mathrm{~s}, \mathrm{ArCH}_{3}\right), 14.93$ (t , $\left.J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 8.01\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 14.70\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2894 \mathrm{~Hz}\right)$. Anal. Found: C, $44.20 ; \mathrm{H}, 5.72 ; \mathrm{N}, 1.71 ; \mathrm{Cl}, 4.22 ; \mathrm{P}, 7.57 \%$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{NClP}_{2} \mathrm{PtRu}: \mathrm{C}, 44.25 ; \mathrm{H}, 5.69 ; \mathrm{N}, 1.72 ; \mathrm{Cl}, 4.35$; P, 7.61\%.

3.9. Reaction of trans-RcPt $\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}(\mathbf{5 a})$ with 2,6-xylyl or p-nitrophenyl isocyanide

These reactions were performed by a procedure similar to that with p-tolyl isocyanide.

9b: Yellow crystals, yield 36%, m.p. $198-199^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v(\mathrm{C}=\mathrm{N}) 1555 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.94$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar})$, $5.29\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.54(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), $2.49\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.75-1.63\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$, 1.03 (quintet, $J=7.8 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 168.0(\mathrm{~s}, \mathrm{C}=\mathrm{N}), 149.7$ (s, ipso C of Ar bound to $-\mathrm{N}=\mathrm{C}$), 128.5 (s, Ar), 128.3 (s , ipso C of Ar bound to CH_{3}), 122.4 (s, Ar), 104.5 (s , ipso C of $\mathrm{C}_{5} \mathrm{H}_{4}$), 73.25 $\left(\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.12\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 69.01\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 21.49(\mathrm{~s}$, ArCH_{3}), $15.40\left(\mathrm{t}, \quad J=16.5 \mathrm{~Hz}, \quad \mathrm{CH}_{2}\right.$), 8.36 (s, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 13.92\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=\right.$ 2992 Hz). Anal. Found: C, 45.00; H, 5.58; N, 1.76; Cl,
4.56; P, 7.30%. Calc. for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{NClP}_{2} \mathrm{PtRu}$: C, 44.95; H, 5.84; N, 1.69; Cl, 4.28; P, 7.48\%.

9c: Yellow orange crystals, yield 50%, m.p. 196$197^{\circ} \mathrm{C}$. IR (KBr): $v(\mathrm{C}=\mathrm{N}) \quad 1535 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 8.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.70(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.56\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 1.86-1.65\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.03$ (quintet, $\left.J=7.9 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $181.0\left(\mathrm{t},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=6.6 \mathrm{~Hz}, \mathrm{C}=\mathrm{N}\right), 159.4\left(\mathrm{~s},{ }^{3} J_{\mathrm{Pt}-\mathrm{C}}=71.1\right.$ Hz , ipso C of Ar bound to $-\mathrm{N}=\mathrm{C}$), 143.2 (s , ipso C of Ar bound to NO_{2}), 124.1 (s, Ar), 121.0 (s, Ar), 101.0 (s, ipso C of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 73.44\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 71.63\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 70.31$ $\left(\mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 14.97\left(\mathrm{t}, J=16.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 8.05\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$. ${ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 15.52\left(\mathrm{~s},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2809 \mathrm{~Hz}\right)$. Anal. Found: C, 41.20; H, 5.18; N, 3.32; Cl, 4.19; P, 7.29\%. Calc. for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{ClO}_{2} \mathrm{P}_{2} \mathrm{PtRu}: \mathrm{C}, 41.21 ; \mathrm{H}, 5.13 ; \mathrm{N}$, 3.31 ; $\mathrm{Cl}, 4.19$; $\mathrm{P}, 7.33 \%$.

3.10. Reaction of trans- $\mathrm{RcPt}\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}$ (5a) with dimethyl acetylenedicarboxylate (DMAD)

To a solution of $\mathbf{5 a}(126 \mathrm{mg}, 0.180 \mathrm{mmol})$ in benzene $(20 \mathrm{ml})$ was added DMAD ($26 \mathrm{mg}, 0.18 \mathrm{mmol}$) and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After removal of the solvent in vacuo, the residue purified by chromatography on alumina using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as an eluent. Recrystallization from toluene/hexane gave yellow crystals of 11a $(37 \mathrm{mg})$ in 25% yield. M.p. $166-167^{\circ} \mathrm{C}$. IR (KBr): $v(\mathrm{C}=\mathrm{O}) \quad 1735, \quad 1705, \quad v(\mathrm{C}=\mathrm{C}) \quad 1610 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 7.94(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.67(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{3}\right), 4.63\left(\mathrm{dd}, J=1.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.52(\mathrm{~s}$, $\left.J_{\mathrm{Pt}-\mathrm{H}}=32.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 3.88(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.48-1.95(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.61-1.56\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22-1.14(\mathrm{~m}, 9 \mathrm{H}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{3}\right), 1.04-0.96\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 169.5(\mathrm{~s}, \mathrm{CO}), 166.5(\mathrm{~s}, \mathrm{CO}), 153.0(\mathrm{~s},=\mathrm{C})$, $110.7(\mathrm{~s},=\mathrm{CH}), 87.07\left(\mathrm{t},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=8.3 \mathrm{~Hz}\right.$, ipso C of $\mathrm{C}_{5} \mathrm{H}_{3}$ bound to Pt), 84.01 ($\mathrm{s},{ }^{2} J_{\mathrm{Pt}-\mathrm{C}}=41.4 \mathrm{~Hz}$, ipso C of $\mathrm{C}_{5} \mathrm{H}_{3}$ bound to $-\mathrm{C}=\mathrm{C}), 81.34\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=56.2 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{3}\right)$, $73.03\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 71.01\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=67.8 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 69.89$ $\left(\mathrm{s}, J_{\mathrm{Pt}-\mathrm{C}}=44.7 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 52.24\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 51.35(\mathrm{~s}$, $\left.\mathrm{OCH}_{3}\right), 13.31\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=21.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{C}}=11.6 \mathrm{~Hz}\right.$, $\left.\mathrm{CH}_{2}\right), 11.38\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=23.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{C}}=9.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $7.76\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right), 7.66\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 18.75\left(\mathrm{~d},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2605 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}-\mathrm{P}}=417 \mathrm{~Hz}\right)$, $17.68\left(\mathrm{~d},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2686 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}-\mathrm{P}}=417 \mathrm{~Hz}\right)$. Anal. Found: C, $40.22 ; \mathrm{H}, 5.40 ; \mathrm{Cl}, 4.50 ; \mathrm{P}, 7.11 \%$. Calc. for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{ClO}_{4} \mathrm{P}_{2} \mathrm{PtRu}: \mathrm{C}, 40.07 ; \mathrm{H}, 5.40 ; \mathrm{Cl}, 4.22 ; \mathrm{P}$, 7.38\%.

3.11. Reaction of trans-RcPt $\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Br}$ (5b) with DMAD

This reaction was performed by a procedure similar to that of 5a.

11b: Yellow crystals, yield 40%, m.p. $154-155^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v(\mathrm{C}=\mathrm{O}) 1730,1705, v(\mathrm{C}=\mathrm{C}) 1610 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.88(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.69(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.52\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{H}}=32.2 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.37\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.66$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.56-1.98\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69-1.63(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{CH}_{2}\right), 1.21-1.13\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right), 1.03-0.95(\mathrm{~m}$, $\left.9 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 169.5$ (s, CO), 166.5 (s, CO), 152.9 ($\mathrm{s},=\mathrm{C}$), $110.6(\mathrm{~s},=\mathrm{CH}), 89.96(\mathrm{t}$, ${ }^{2} J_{\mathrm{P}-\mathrm{C}}=8.3 \mathrm{~Hz}$, ipso C of $\mathrm{C}_{5} \mathrm{H}_{3}$ bound to Pt), 84.16 (s, ${ }^{2} J_{\mathrm{Pt}-\mathrm{C}}=43.0 \mathrm{~Hz}$, ipso C of $\mathrm{C}_{5} \mathrm{H}_{3}$ bound to $-\mathrm{C}=\mathrm{C}$), $81.22\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=61.2 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 73.22\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 70.98$ $\left(\mathrm{s}, J_{\mathrm{Pt}-\mathrm{C}}=66.2 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 69.98\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=46.3 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{3}\right), 52.29\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 51.42\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 13.90(\mathrm{dd}$, $\left.{ }^{1} J_{\mathrm{P}-\mathrm{C}}=21.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{C}}=9.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 12.30\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}-}\right.$ $\left.\mathrm{C}=24.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{C}}=9.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 7.88\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right)$. ${ }^{31} \mathrm{P}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 18.05\left(\mathrm{~d},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2586 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}-}\right.$ $\mathrm{P}=414 \mathrm{~Hz}), 16.82\left(\mathrm{~d},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2652 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}-\mathrm{P}}=414\right.$ Hz). Anal. Found: C, 38.15; H, 5.14; Br, 9.01; P, 6.93\%. Calc. for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{BrO}_{4} \mathrm{P}_{2} \mathrm{PtRu}: \mathrm{C}, 38.06 ; \mathrm{H}, 5.13 ; \mathrm{Br}$, 9.04; P, 7.01\%.

3.12. Reaction of trans-RcPt $\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Cl}$ (5a) with diethyl acetylenedicarboxylate

This reaction was also carried out by a procedure similar to that with DMAD.

11c: Yellow crystals, yield 30%, m.p. $127-128^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}): v(\mathrm{C}=\mathrm{O}) 1730,1705, v(\mathrm{C}=\mathrm{C}) 1610 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3}\right)$, $4.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.52\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 4.37(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{5}$), 4.34 (quartet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 4.12 (d quartet, $\left.J=7.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 2.50-1.94(\mathrm{~m}, 6 \mathrm{H}$, PCH_{2}), 1.59 (quartet, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}_{2}$), $1.39(\mathrm{t}$, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \quad \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $\mathrm{OCH}_{2} \mathrm{CH}_{3}$), 1.23-1.12 (m, 9H, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{3}\right), 1.04-0.96$ $\left(\mathrm{m}, 9 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) \cdot{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 169.0(\mathrm{~s}$, $\mathrm{CO}), 165.9(\mathrm{~s}, \mathrm{CO}), 152.7(\mathrm{~s},=\mathrm{C}), 111.2(\mathrm{~s},=\mathrm{CH}), 86.82$ $\left(\mathrm{t},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=8.3 \mathrm{~Hz}\right.$, ipso C of $\mathrm{C}_{5} \mathrm{H}_{3}$ bound to Pt$), 84.19$ $\left(\mathrm{s},{ }^{2} J_{\mathrm{Pt}-\mathrm{C}}=41.4 \mathrm{~Hz}\right.$, ipso C of $\mathrm{C}_{5} \mathrm{H}_{3}$ bound to $-\mathrm{C}=\mathrm{C}$), $81.16\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=61.2 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 72.92\left(\mathrm{~s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 70.86$ $\left(\mathrm{s}, J_{\mathrm{Pt}-\mathrm{C}}=67.8 \mathrm{~Hz}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 69.68\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{C}}=44.7 \mathrm{~Hz}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{3}\right), 61.06\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 59.82\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 14.18(\mathrm{~s}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 14.05\left(\mathrm{~s}, \mathrm{OCH}_{2} C \mathrm{H}_{3}\right), 13.22\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=\right.$ $\left.21.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{C}}=9.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 11.31\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=24.8\right.$ $\left.\mathrm{Hz},{ }^{3} J_{\mathrm{P}-\mathrm{C}}=9.9 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 7.73\left(\mathrm{~s}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right), 7.60(\mathrm{~s}$, $\left.\mathrm{PCH}_{2} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 18.34\left(\mathrm{~d},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=\right.$ $\left.2611 \mathrm{~Hz},{ }^{2} J_{\mathrm{P}-\mathrm{P}}=417 \mathrm{~Hz}\right), 16.95\left(\mathrm{~d},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2686 \mathrm{~Hz}\right.$, ${ }^{2} J_{\mathrm{P}-\mathrm{P}}=417 \mathrm{~Hz}$). Anal. Found: C, $41.79 ; \mathrm{H}, 5.72 ; \mathrm{Cl}$, 4.25; $\mathrm{P}, 7.00 \%$. Calc. for $\mathrm{C}_{30} \mathrm{H}_{49} \mathrm{ClO}_{4} \mathrm{P}_{2} \mathrm{PtRu}$: C, 41.55; H, 5.69; Cl, 4.09; P, 7.14\%.

3.13. X-ray crystallographic studies

Single crystals of 3,4,5c and 9a suitable for an X-ray diffraction analysis were obtained by cooling of
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solution of 3 at $-10^{\circ} \mathrm{C}$, slow evaporation of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{4}$ at r.t., slow evaporation of hexane solution for 5 c at r.t. and cooling of toluene/hexane solution at $-10^{\circ} \mathrm{C}$ for 9 a , respectively, and mounted on glass fibers with epoxy resin. Diffraction measurements were made on a Rigaku AFC5R diffractometer with graphite monochromated Mo $-\mathrm{K}_{\alpha}$ radiation ($\lambda=0.71069 \AA$) using $\omega / 2 \theta$ scan technique with a scan rate $8^{\circ} \mathrm{min}^{-1}$ for 3 and 4 or $16^{\circ} \min ^{-1}$ for 5 c and 9 a . Unit cells were determined and refined by a least-square method using 25 reflections in the range $34<2 \theta<35^{\circ}$ for $\mathbf{3}, 4$ and $\mathbf{5 c}$, and 25 reflections in the range $24<2 \theta<30^{\circ}$ for 9 a. The data of weak reflections $(I<10 \sigma(I))$ were measured twice and averaged. Three standard reflections were monitored at every 150 measurements and no damage was observed. Intensities were collected for Lorentz and polarization effects and an empirical absorption collection was made using ψ-scan technique. Relevant crystal data are given in Table 5.

The positions of metal atoms were located by Patterson method. Subsequent difference Fourier maps revealed the positions of all non-hydrogen atoms. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms were included at the calculated positions using isotropic thermal parameters. The final cycles of full-matrix least-squares refinement were converged, and the largest parameter shifts against errors were 0.01 for $\mathbf{3}, 0.36$ for $\mathbf{4}, 0.63$ for $\mathbf{5 c}$, and 0.86 for $7 \mathbf{a}$, respectively. The unweighted and weighted agreement factors are $R=\Sigma\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right| / /$ $\Sigma\left|F_{\mathrm{o}}\right|=0.026 \quad$ and $\quad R_{w}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma w F_{\mathrm{o}}^{2}\right]^{0.5}=$ 0.029 for 3, $R=0.032$ and $R_{w}=0.036$ for $\mathbf{4}$, $R=0.036$ and $R_{w}=0.035$ for $\mathbf{5 c}$, and $R=0.064$ and $R_{w}=0.056$ for 7a, respectively. All calculation were performed on VAX station 3100 using the teXsan crystallographic software package.

Acknowledgements

This work is supported by Grant-in-Aid for Scientific Research from The Ministry of Education, Science, Sports and Culture.

References

[1] A. Togni, T. Hayashi (Eds.), Ferrocenes, VCH, Weinheim, 1995.
[2] M. Rosenblum, Chemisty of the Iron Group Metallocenes, Wiley, New York, 1965.
[3] (a) G.L. Hardgrove, D.H. Templeton, Acta Crystallogr. 12 (1959) 28. (b) J.D. Dunitz, L.E. Orgel, A. Rich, Acta Crystallogr. 9 (1956) 373.
[4] S.P. Gubin, S.A. Smirnova, L.I. Penisovich, A.A. Lubovich, J. Organomet. Chem. 30 (1971) 243.
[5] (a) V.G. Andrianov, Y.T. Struchkov, E.R. Rossinskaya, J. Chem. Soc. Chem. Commun. (1973) 338. (b) A.N. Nesmeyanov, Y.T. Struchkov, N.N. Sedova, V.G. Andrianov, Y.V. Volgin, V.A. Sazonova, J. Organomet. Chem. 137 (1977) 217. (c) A.N. Nesmeyanov, N.N. Sedova, Y.T. Struchkov, V.G. Andrianov, E.N. Stakheeva, V.A. Sazonova, J. Organomet. Chem. 153 (1978) 115. (d)D.Seyferth, B.W.Hames, T.G. Rucker, M. Cowie, R.S. Dickson, Organometallics 2 (1983) 472. (e) M. Cowie, R.S. Dickson, J. Organomet. Chem. 326 (1987) 269. (f) S. Akabori, T. Kumagai, T. Shirahige, S. Sato, K. Kawazoe, C. Tamura, Organometallics 6 (1987) 2105. (g) M.I. Bruce, P.A. Humphrey, O. bin Shawkataly, M.R.Snow, E.R.T.Tiekink, W.R.Cullen, Organometallics 9 (1990) 2910. (h) W.R. Cullen, S.J. Rettig, T.-C. Zheng, Organometallics 11 (1992) 277. (i) M. Sato, K. Suzuki, H, Asano, M. Sekino, Y. Kawata. Y. Habata, S. Akabori, J. Organomet. Chem. 473 (1994) 263.
[6] T. Yoshida, S. Tanaka, T. Adachi, T. Yoshida, K. Onitsuka, K. Sonogashira, Angew. Chem. Int. Ed. Engl. 34 (1995) 319.
[7] T. Yoshida, K. Onitsuka, K. Sonogashira, J. Organomet. Chem. 511 (1996) 47.
[8] K. Onitsuka, T. Yoshida, T. Adachi, T. Yoshida, K. Sonogashira, Chem. Lett. (1995) 233.
[9] (a) H. Bürger, C. Kluess, Z. Anorg. Allg. Chem. 423 (1976) 112. (b) S. Kamiyama, T. Kimura, A. Kasahara, T. Izumi, M. Maemura, Bull. Chem. Soc. Jpn. 52 (1979) 142.
[10] Z. Dawoodi, C. Eaborn, A. Pidcock, J. Organomet. Chem. 170 (1979) 95.
[11] T. Yoshida, S. Tanaka, K. Shiina, K. Sonogashira, unpublished results.
[12] E.O. Fischer, M. von Foerster, C.G. Kreiter, K.E. Schwarzhans, J. Organomet. Chem. 7 (1967) 113.
[13] N. Fujita, K. Sonogashira, J. Polym. Sci. Polym. Chem. Ed. 12 (1973) 1471.
[14] R.E. Hollands, A.G. Osborne, R.H. Whiteley, C.J. Cardin, J. Chem. Soc. Dalton Trans. (1985) 1527.
[15] K.Onitsuka, N.Hosokawa, T. Adachi, T. Yoshida, K. Sonogashira, Chem. Lett. (1994) 1985.
[16] G. Booth, J. Chatt, J. Chem. Soc. A (1966) 634.
[17] (a)K.P. Wagner,P.M.Treichel,J.C.Calagrese,J.Organomet.Chem. 71 (1974) 299. (b) K. Onitsuka, K. Murakami, K. Matsukawa, K. Sonogashira,T.Adachi,T.Yoshida,J.Organomet.Chem.490(1995) 117.
[18] G.K. Anderson, R.J. Cross, Acc. Chem. Res. 17 (1984) 67.
[19] W.P. Weber, G.W. Gokel, Tetrahedron Lett. 17 (1972) 1637.

[^0]: 2 Dedicated to the late Professor Rokuro Okawara on the occasion of his memorial issue.

 * Corresponding author. Present address: Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
 ${ }^{1}$ Also corresponding author.
 ${ }^{2}$ Also corresponding author.

